Unusual width of the superconducting transition in a hydride

Nature
  • 1.

    Snider, E. et al. Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature 586, 373–377 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 2.

    Tinkham, M. Introduction to Superconductivity (McGraw Hill, 1996).

  • 3.

    Pickard, C. J., Errea, I. & Eremets, M. I. Superconducting hydrides under pressure. Annu. Rev. Condens. Matter Phys. 11, 57–76 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Kim, Y. B., Hempstead, C. F. & Strnad, A. R. Flux-flow resistance in type-II superconductors. Phys. Rev. 139, A1163 (1965).

    ADS 
    Article 

    Google Scholar
     

  • 5.

    Anderson, P. W. & Kim, Y. B. Hard superconductivity: theory of the motion of Abrikosov flux lines. Rev. Mod. Phys. 36, 39 (1964).

    ADS 
    Article 

    Google Scholar
     

  • 6.

    Fisher, D. S., Fisher, M. P. A. & Huse, D. A. Thermal fluctuations, quenched disorder, phase transitions, and transport in type-II superconductors. Phys. Rev. B 43, 130–159 (1991).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 7.

    Canfield, P. C., Bud’ko, S. L. & Finnemore, D. K. An overview of the basic physical properties of MgB2. Physica C 385, 1–7 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 8.

    Gupta, A. et al. Resistivity broadening, upper critical fields and irreversibility lines in bulk PbMo6S8 and SnMo6S8 Chevrel phase superconductors. Physica C 235–240, 2541–2542 (1994).

    ADS 
    Article 

    Google Scholar
     

  • 9.

    Guo, J. et al. Robust zero resistance in a superconducting high-entropy alloy at pressures up to 190 GPa. Proc. Natl Acad. Sci. USA 114, 13144–13147 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 10.

    Kumar, D. et al. Flux pinning and improved critical current density in superconducting boron doped diamond films. J. Phys. Commun. 2, 045015 (2018).

    Article 

    Google Scholar
     

  • 11.

    Eisaki, H. et al. Competition between magnetism and superconductivity in rare-earth nickel boride carbides. Phys. Rev. B 50, 647(R) (1994).

    ADS 
    Article 

    Google Scholar
     

  • 12.

    Iye, Y. et al. The anisotropic superconductivity of RBa2Cu3O7−x (R: Y, Gd and Ho) single crystals. Physica C 153–155, 26–31 (1988).

    ADS 
    Article 

    Google Scholar
     

  • 13.

    Kitazawa, K. et al. Broadening mechanism of resistive transition under magnetic field in single crystalline (La1−xSrx)2CuO4. Jpn. J. Appl. Phys. 28, L555 (1989).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Ito, H. et al. Resistive superconducting transition of κ-type BEDT-TTF organic superconductors in a magnetic field. J. Supercond. 7, 667–669 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 15.

    Chen, X. H. et al. Superconductivity at 43 K in SmFeAsO1−xFx. Nature 453, 761–762 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 16.

    Jung, S.-G. et al. Influence of carbon-ion irradiation on the superconducting critical properties of MgB2 thin films. Supercond. Sci. Technol. 32, 025006 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 17.

    Song, J., Fabbris, G., Bi, W., Haskel, D. & Schilling, J. S. Pressure-induced superconductivity in elemental ytterbium metal. Phys. Rev. Lett. 121, 037004 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Products You May Like

    Articles You May Like

    First Movie in Space: Russian Actress, Film Director Return to Earth After Filming
    Donna Strickland on her life-changing Nobel prize, previewing Black in Physics Week, nuclear fusion in stars
    LinkedOut
    Scientists Gain Insights into the Ecology of Brazilian Fishing Jaguars
    Sustainable jet fuel targets could push food prices higher, Ryanair CEO O’Leary warns

    Leave a Reply