Spin current from sub-terahertz-generated antiferromagnetic magnons

Nature



  • 1.

    Gomonay, O., Baltz, V., Brataas, A. & Tserkovnyak, Y. Antiferromagnetic spin textures and dynamics. Nat. Phys. 14, 213–216 (2018).




  • 2.

    Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photon. 5, 31–34 (2011).




  • 3.

    Tzschaschel, C. et al. Ultrafast optical excitation of coherent magnons in antiferromagnetic NiO. Phys. Rev. B 95, 174407 (2017).




  • 4.

    Cheng, R., Xiao, J., Niu, Q. & Brataas, A. Spin pumping and spin-transfer torques in antiferromagnets. Phys. Rev. Lett. 113, 057601 (2014).




  • 5.

    Johansen, Ö. & Brataas, A. Spin pumping and inverse spin Hall voltages from dynamical antiferromagnets. Phys. Rev. B 95, 220408 (2017).




  • 6.

    Ross, P. et al. Antiferromagentic resonance detected by direct current voltages in MnF2/Pt bilayers. J. Appl. Phys. 118, 233907 (2015).




  • 7.

    Hoffmann, A. Spin Hall effects in metals. IEEE Trans. Magn. 49, 5172–5193 (2013).




  • 8.

    Sinova, J. et al. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).




  • 9.

    Li, J. et al. Observation of magnon-mediated current drag in Pt/yttrium iron garnet/Pt(Ta) trilayers. Nat. Commun. 7, 10858 (2016).




  • 10.

    Marti, X. et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367–374 (2014).




  • 11.

    Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).




  • 12.

    Kriegner, D. et al. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe. Nat. Commun. 7, 11623 (2016).




  • 13.

    Kittel, C. Theory of antiferromagnetic resonance. Phys. Rev. 82, 565 (1951).




  • 14.

    Keffer, F. & Kittel, C. Theory of antiferromagnetic resonance. Phys. Rev. 85, 329–337 (1952).




  • 15.

    Němec, P., Fiebig, M., Kampfrath, T. & Kimel, A. V. Antiferromagnetic opto-spintronics. Nat. Phys. 14, 229–241 (2018).




  • 16.

    Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).




  • 17.

    He, X. et al. Robust isothermal electric control of exchange bias at room temperature. Nat. Mater. 9, 579–585 (2010).




  • 18.

    Dayhoff, E. S. Antiferromagnetic resonance in Cr2O3. Phys. Rev. 107, 84 (1957).




  • 19.

    Foner, S. High-field antiferromagnetic resonance in Cr2O3. Phys. Rev. 130, 183–197 (1963).




  • 20.

    Takahashi, S. et al. Pulsed electron paramagnetic resonance spectroscopy powered by a free-electron laser. Nature 489, 409 (2012).




  • 21.

    Edwards, D. T., Zhang, Y., Glaser, S. J., Han, S. & Sherwin, M. S. Phase cycling with a 240 GHz, free electron laser-powered electron paramagnetic resonance spectrometer. Phys. Chem. Chem. Phys. 15, 5707 (2013).




  • 22.

    Bogdanov, A. N., Zhuravlev, A. V. & Robler, U. K. Spin-flop transition in uniaxial antiferromagnets: magnetic phases, reorientation effects, and multidomain states. Phys. Rev. B 75, 094425 (2007).


  • 23.

    Lin, W. W. & Chien, C. L. Evidence of pure spin current. Preprint at https://arxiv.org/abs/1804.01392 (2018).




  • 24.

    Chen, Y. S., Lin, J. G., Huang, S. Y. & Chien, C. L. Incoherent spin pumping from YIG single crystals. Phys. Rev. B 99, 220402 (2019).




  • 25.

    Seki, S. et al. Thermal generation of spin current in an antiferromagnet. Phys. Rev. Lett. 115, 266601 (2015).




  • 26.

    Geprägs, S. et al. Origin of the spin Seebeck effect in compensated ferrimagnets. Nat. Commun. 7, 10452 (2016).




  • 27.

    Cramer, J. et al. Magnon mode selective spin transport in compensated ferrimagnets. Nano Lett. 17, 3334 (2017).




  • 28.

    Rezende, S. M., Rodríguez-Suárez, R. L. & Azevedo, A. Theory of the spin Seebeck effect in antiferromagnets. Phys. Rev. B 93, 014425 (2016).




  • 29.

    Wu, S. M. et al. Antiferromagnetic spin Seebeck effect. Phys. Rev. Lett. 116, 097204 (2016).




  • 30.

    Li, J. et al. Spin Seebeck effect from antiferromagnetic magnons and critical spin fluctuations in epitaxial FeF2 films. Phys. Rev. Lett. 122, 217204 (2019).

  • Products You May Like

    Articles You May Like

    U.S. generals planning for a space war they see as all but inevitable
    Could microscale concave interfaces help self-driving cars read road signs?
    Firm behind ‘world’s most powerful tidal turbine’ to head up new $31 million energy project
    An Historic Milestone for Perseverance on This Week @NASA – September 10, 2021
    All-electric aircraft from Rolls-Royce completes maiden flight in Britain

    Leave a Reply

    Your email address will not be published. Required fields are marked *