Programmable photonic circuits

Nature
  • 1.

    Chen, X. et al. The emergence of silicon photonics as a flexible technology platform. Proc. IEEE 106, 2101–2116 (2018).

    CAS 

    Google Scholar
     

  • 2.

    Smit, M., Williams, K. & van der Tol, J. Past, present, and future of InP-based photonic integration. APL Photonics 4, 050901 (2019).

    ADS 

    Google Scholar
     

  • 3.

    Capmany, J. & Perez, D. Programmable Integrated Photonics (Oxford Univ. Press, 2020). The first book on the subject of programmable photonics gives a detailed overview of the fundamental principles, architectures and potential applications.

  • 4.

    Marpaung, D., Yao, J. & Capmany, J. Integrated microwave photonics. Nat. Photon. 13, 80–90 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K. & Lowery, A. J. Programmable photonic signal processor chip for radiofrequency applications. Optica 2, 854–859 (2015).

    ADS 

    Google Scholar
     

  • 6.

    Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 7.

    Harris, N. C. et al. Linear programmable nanophotonic processors. Optica 5, 1623–1631 (2018). One of the largest-scale demonstrations of a programmable photonic circuit, using a silicon photonics forward-only mesh that maps 26 input modes onto 26 output modes, for use in deep learning and quantum information processing.

    ADS 
    CAS 

    Google Scholar
     

  • 8.

    Miller, D. A. B. Self-configuring universal linear optical component. Photon. Res. 1, 1–15 (2013). This foundational paper in the field of programmable photonics is the first to bring together waveguide meshes with self-configuration algorithms that require no active computation, including the concept of the self-aligning beam coupler.

    ADS 

    Google Scholar
     

  • 9.

    Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).

    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • 10.

    Harris, N. C. et al. Large-scale quantum photonic circuits in silicon. Nanophotonics 5, 456–468 (2016).

    CAS 

    Google Scholar
     

  • 11.

    Notaros, J. et al. Programmable dispersion on a photonic integrated circuit for classical and quantum applications. Opt. Express 25, 21275–21285 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 12.

    Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S. & Walmsley, I. A. An optimal design for universal multiport interferometers. Optica 12, 1460–1465 (2016).

    ADS 

    Google Scholar
     

  • 13.

    Perez-Lopez, D. Programmable integrated silicon photonics waveguide meshes: optimized designs and control algorithms. IEEE J. Sel. Top. Quantum Electron. 26, 8301312 (2020).


    Google Scholar
     

  • 14.

    Ribeiro, A., Ruocco, A., Vanacker, L. & Bogaerts, W. Demonstration of a 4×4-port universal linear circuit. Optica 3, 1348–1357 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 15.

    Harris, N. C. et al. Quantum transport simulations in a programmable nanophotonic processor. Nat. Photon. 11, 447–452 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 16.

    Mennea, P. L. et al. Modular linear optical circuits. Optica 5, 1087–1090 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 17.

    Taballione, C. et al. 8×8 programmable quantum photonic processor based on silicon nitride waveguides. In Frontiers in Optics, JTu3A.58 (Optical Society of America, 2018). A demonstration of an 8 × 8 forward-only programmable linear circuit in silicon nitride that benefits from the notably low optical losses of this material and is therefore attractive for linear quantum operations on single photons.

  • 18.

    Perez, D. et al. Silicon photonics rectangular universal interferometer. Laser Photonics Rev. 11, 1700219 (2017).

    ADS 

    Google Scholar
     

  • 19.

    Xie, Y. et al. Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity. Nanophotonics 7, 421–454 (2017). A comprehensive overview of the various ways in which a programmable photonic circuit can be used to process microwave signals, and on how this type of circuit is transitioning from custom ASPICs to generic programmable PICs.


    Google Scholar
     

  • 20.

    Hall, T. J. & Hasan, M. Universal discrete Fourier optics RF photonic integrated circuit architecture. Opt. Express 24, 7600–7610 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 21.

    Dyakonov, I. V. et al. Reconfigurable photonics on a glass chip. Phys. Rev. Appl. 10, 044048 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 22.

    Shokraneh, F., Geoffroy-Gagnon, S., Nezami, M. S. & Liboiron-Ladouceur, O. A single layer neural network implemented by a 4×4 MZI-based optical processor. IEEE Photonics J. 11, 4501612 (2019).


    Google Scholar
     

  • 23.

    Lu, L., Zhou, L. & Chen, J. Programmable SCOW mesh silicon photonic processor for linear unitary operator. Micromachines 10, 646 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Qiang, X. et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photon. 12, 534–539 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 25.

    Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).

    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • 26.

    Schaeff, C., Polster, R., Huber, M., Ramelow, S. & Zeilinger, A. Experimental access to higher-dimensional entangled quantum systems using integrated optics. Optica 2, 523–529 (2015).

    ADS 

    Google Scholar
     

  • 27.

    Shadbolt, P. J. et al. Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nat. Photon. 6, 45–49 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 28.

    Miller, D. A. B. Waves, modes, communications, and optics: a tutorial. Adv. Opt. Photonics 11, 679 (2019).

    ADS 

    Google Scholar
     

  • 29.

    Miller, D. A. B. Self-aligning universal beam coupler. Opt. Express 21, 6360–6370 (2013).

    ADS 

    Google Scholar
     

  • 30.

    Miller, D. A. B. Perfect optics with imperfect components. Optica 2, 747–750 (2015).

    ADS 

    Google Scholar
     

  • 31.

    Annoni, A. et al. Unscrambling light—automatically undoing strong mixing between modes. Light Sci. Appl. 6, e17110 (2017). Early demonstration of a forward-only programmable mesh used to unmix different modes in a waveguide, implementing integrated transparent detectors that measure the light intensity in the waveguide without inducing additional optical loss.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Pai, S. et al. Parallel programming of an arbitrary feedforward photonic network. IEEE J. Sel. Top. Quantum Electron. 25, 6100813 (2020).


    Google Scholar
     

  • 33.

    Reck, M., Zeilinger, A., Bernstein, H. J. & Bertani, P. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994).

    ADS 
    CAS 

    Google Scholar
     

  • 34.

    Wang, M., Alves, A. R., Xing, Y. & Bogaerts, W. Tolerant, broadband tunable 2×2 coupler circuit. Opt. Express 28, 5555–5566 (2020).

    ADS 

    Google Scholar
     

  • 35.

    Pérez-López, D., Gutierrez, A. M., Sánchez, E., DasMahapatra, P. & Capmany, J. Integrated photonic tunable basic units using dual-drive directional couplers. Opt. Express 27, 38071 (2019).

    ADS 

    Google Scholar
     

  • 36.

    Choutagunta, K., Roberts, I., Miller, D. A. B. & Kahn, J. M. Adapting Mach–Zehnder mesh equalizers in direct-detection mode-division-multiplexed links. J. Light. Technol. 38, 723–735 (2020).

    ADS 

    Google Scholar
     

  • 37.

    Miller, D. A. B. Analyzing and generating multimode optical fields using self-configuring networks. Optica 7, 794–801 (2020).

    ADS 

    Google Scholar
     

  • 38.

    Morizur, J.-F. et al. Programmable unitary spatial mode manipulation. J. Opt. Soc. Am. A 27, 2524 (2010).

    ADS 

    Google Scholar
     

  • 39.

    Labroille, G. et al. Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion. Opt. Express 22, 15599–15607 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Tanomura, R., Tang, R., Ghosh, S., Tanemura, T. & Nakano, T. Robust integrated optical unitary converter using multiport directional couplers. J. Light. Technol. 38, 60–66 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 41.

    Miller, D. A. B. Setting up meshes of interferometers – reversed local light interference method. Opt. Express 25, 29233 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 42.

    Li, H. W. et al. Calibration and high fidelity measurement of a quantum photonic chip. New J. Phys. 15, 063017 (2013).

    ADS 

    Google Scholar
     

  • 43.

    Cong, G. et al. Arbitrary reconfiguration of universal silicon photonic circuits by bacteria foraging algorithm to achieve reconfigurable photonic digital-to-analog conversion. Opt. Express 27, 24914 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 44.

    Pérez, D. et al. Multipurpose silicon photonics signal processor core. Nat. Commun. 8, 1–9 (2017). The first experimental demonstration of a recirculating waveguide mesh with seven unit cells that can be programmed to perform more than a hundred different functions.

    ADS 

    Google Scholar
     

  • 45.

    Pérez, D., Gasulla, I. & Capmany, J. Field-programmable photonic arrays. Opt. Express 26, 27265 (2018).

    ADS 

    Google Scholar
     

  • 46.

    Rahim, A., Spuesens, T., Baets, R. & Bogaerts, W. Open-access silicon photonics: current status and emerging initiatives. Proc. IEEE 106, 2313–2330 (2018).


    Google Scholar
     

  • 47.

    Munoz, P. et al. Foundry developments toward silicon nitride photonics from visible to the mid-infrared. IEEE J. Sel. Top. Quantum Electron. 25, 8200513 (2019).


    Google Scholar
     

  • 48.

    Teng, M. et al. Miniaturized silicon photonics devices for integrated optical signal processors. J. Light. Technol. 38, 6–17 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 49.

    Sacher, W. D. et al. Monolithically integrated multilayer silicon nitride-on-silicon waveguide platforms for 3-D photonic circuits and devices. Proc. IEEE 106, 2232–2245 (2018).

    CAS 

    Google Scholar
     

  • 50.

    Baudot, C. et al. Developments in 300mm silicon photonics using traditional CMOS fabrication methods and materials. In 2017 IEEE Int. Electron Devices Meeting, 765–768 (IEEE, 2017).

  • 51.

    Fahrenkopf, N. M. et al. The AIM photonics MPW: a highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 25, 8201406 (2019).


    Google Scholar
     

  • 52.

    Chiles, J. et al. Multi-planar amorphous silicon photonics with compact interplanar couplers, cross talk mitigation, and low crossing loss. APL Photonics 2, 116101 (2017).

    ADS 

    Google Scholar
     

  • 53.

    Van Campenhout, J., Green, W. M. J., Assefa, S. & Vlasov, Y. A. Integrated NiSi waveguide heaters for CMOS-compatible silicon thermo-optic devices. Opt. Lett. 35, 1013–1015 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Masood, A. et al. Comparison of heater architectures for thermal control of silicon photonic circuits. In Proc. 10th Int. Conference on Group IV Photonics 83–84 (IEEE, 2013).

  • 55.

    Milanizadeh, M., Aguiar, D., Melloni, A. & Morichetti, F. Canceling thermal cross-talk effects in photonic integrated circuits. J. Light. Technol. 37, 1325–1332 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 56.

    Soref, R. A. & Bennett, B. R. Electrooptical effects in silicon. IEEE J. Quantum Electron. 23, 123–129 (1987).

    ADS 

    Google Scholar
     

  • 57.

    Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nat. Photon. 4, 518–526 (2010); corrigendum 4, 660 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 58.

    Memon, F. A. et al. Silicon oxycarbide platform for integrated photonics. J. Light. Technol. 38, 784–791 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 59.

    Jin, W., Polcawich, R. G., Morton, P. A. & Bowers, J. E. Piezoelectrically tuned silicon nitride ring resonator. Opt. Express 26, 3174–3187 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 60.

    Hosseini, N. et al. Stress-optic modulator in TriPleX platform using a piezoelectric lead zirconate titanate (PZT) thin film. Opt. Express 23, 14018 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    De Cort, W., Beeckman, J., Claes, T., Neyts, K. & Baets, R. Wide tuning of silicon-on-insulator ring resonators with a liquid crystal cladding. Opt. Lett. 36, 3876–3878 (2011).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Xing, Y. et al. Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration. IEEE Photonics Technol. Lett. 27, 1269–1272 (2015).

    ADS 

    Google Scholar
     

  • 63.

    Abel, S. et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat. Mater. 18, 42–47 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Desiatov, B., Shams-Ansari, A., Zhang, M., Wang, C. & Lončar, M. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica 6, 380 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 65.

    Alexander, K. et al. Nanophotonic Pockels modulators on a silicon nitride platform. Nat. Commun. 9, 3444 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Leuthold, J. et al. Silicon-organic hybrid electro-optical devices. IEEE J. Sel. Top. Quantum Electron. 19, 114–126 (2013).

    ADS 

    Google Scholar
     

  • 67.

    Errando-Herranz, C. et al. MEMS for photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 26, 8200916 (2020).

    CAS 

    Google Scholar
     

  • 68.

    Quack, N. et al. MEMS-enabled silicon photonic integrated devices and circuits. IEEE J. Quantum Electron. 56, 8400210 (2020).


    Google Scholar
     

  • 69.

    Hoessbacher, C. et al. The plasmonic memristor: a latching optical switch. Optica 1, 198 (2014).

    ADS 

    Google Scholar
     

  • 70.

    Ríos, C. et al. Integrated all-photonic non-volatile multi-level memory. Nat. Photon. 9, 725–732 (2015).

    ADS 

    Google Scholar
     

  • 71.

    Wuttig, M., Bhaskaran, H. & Taubner, T. Phase-change materials for non-volatile photonic applications. Nat. Photon. 11, 465–476 (2017).

    CAS 

    Google Scholar
     

  • 72.

    Morichetti, F. et al. Non-invasive on-chip light observation by contactless waveguide conductivity monitoring. IEEE J. Sel. Top. Quantum Electron. 20, 292–301 (2014).

    ADS 

    Google Scholar
     

  • 73.

    Jayatilleka, H., Shoman, H., Chrostowski, L. & Shekhar, S. Photoconductive heaters enable control of large-scale silicon photonic ring resonator circuits. Optica 6, 84–91 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 74.

    Grillanda, S. et al. Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics. Optica 1, 129 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 75.

    Annoni, A. et al. Automated routing and control of silicon photonic switch fabrics. IEEE J. Sel. Top. Quantum Electron. 22, 169–176 (2016).

    ADS 

    Google Scholar
     

  • 76.

    Dumais, P. et al. Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package. J. Light. Technol. 36, 233–238 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 77.

    Chen, H., Luo, X. & Poon, A. W. Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a p–i–n diode embedded silicon microring resonator. Appl. Phys. Lett. 95, 171111 (2009).

    ADS 

    Google Scholar
     

  • 78.

    Ribeiro, A. & Bogaerts, W. Digitally controlled multiplexed silicon photonics phase shifter using heaters with integrated diodes. Opt. Express 25, 29778 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 79.

    Zimmermann, L. et al. BiCMOS silicon photonics platform. In Optical Fiber Communication Conference Th4E-5 (Optical Society of America, 2015).

  • 80.

    Orcutt, J. S. et al. Nanophotonic integration in state-of-the-art CMOS foundries. Opt. Express 19, 2335–2346 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 81.

    Stojanović, V. et al. Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes. Opt. Express 26, 13106 (2018).

    ADS 

    Google Scholar
     

  • 82.

    Carroll, L. et al. Photonic packaging: transforming silicon photonic integrated circuits into photonic devices. Appl. Sci. 6, 426 (2016).


    Google Scholar
     

  • 83.

    Patterson, D., De Sousa, I. & Archard, L.-M. The future of packaging with silicon photonics. Chip Scale Rev. 21, 1–10 (2017).


    Google Scholar
     

  • 84.

    Ribeiro, A., Declercq, S., Khan, U., Wang, M. & Van Iseghem, L. Column-row addressing of thermo-optic phase shifters for controlling large silicon photonic circuits. IEEE J. Sel. Top. Quantum Electron. 26, 6100708 (2020).

    CAS 

    Google Scholar
     

  • 85.

    Pantouvaki, M. et al. Active components for 50 Gb/s NRZ-OOK optical interconnects in a silicon photonics platform. J. Light. Technol. 35, 631–638 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 86.

    Chen, H. et al. 100-Gbps RZ data reception in 67-GHz Si-contacted germanium waveguide p-i-n photodetectors. J. Light. Technol. 35, 722–726 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 87.

    Pérez, D., Gasulla, I. & Capmany, J. Toward programmable microwave photonics processors. J. Light. Technol. 36, 519–532 (2018).

    ADS 

    Google Scholar
     

  • 88.

    Zoldak, M., Halmo, L., Turkiewicz, J. P., Schumann, S. & Henker, R. Packaging of ultra-high speed optical fiber data interconnects. In Opt. Fibers and Their Applications 2017 10325, 103250R (International Society for Optics and Photonics, 2017).

  • 89.

    Willner, A. E., Khaleghi, S., Chitgarha, M. R. & Yilmaz, O. F. All-optical signal processing. J. Light. Technol. 32, 660–680 (2014).

    ADS 

    Google Scholar
     

  • 90.

    Ramirez, J. M. et al. III–V-on-silicon integration: from hybrid devices to heterogeneous photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 26, 6100213 (2020).


    Google Scholar
     

  • 91.

    Liu, A. Y. & Bowers, J. Photonic integration with epitaxial III–V on silicon. IEEE J. Sel. Top. Quantum Electron. 24, 6000412 (2018).


    Google Scholar
     

  • 92.

    Zhang, J. et al. Transfer-printing-based integration of a III–V-on-silicon distributed feedback laser. Opt. Express 26, 8821–8830 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 93.

    Thiessen, T. et al. Back-side-on-BOX heterogeneously integrated III–V-on-silicon O-band distributed feedback lasers. J. Light. Technol. 38, 3000–3006 (2020).

    ADS 

    Google Scholar
     

  • 94.

    López, A., Perez, D., DasMahapatra, P. & Capmany, J. Auto-routing algorithm for field-programmable photonic gate arrays. Opt. Express 28, 737–752 (2020).

    ADS 

    Google Scholar
     

  • 95.

    Chen, X., Stroobant, P., Pickavet, M. & Bogaerts, W. Graph representations for programmable photonic circuits. J. Light. Technol. https://ieeexplore.ieee.org/document/9056549 (2020).

  • 96.

    Zand, I. & Bogaerts, W. Effects of coupling and phase imperfections in programmable photonic hexagonal waveguide meshes. Photon. Res. 8, 211–218 (2020).


    Google Scholar
     

  • 97.

    Bogaerts, W. & Rahim, A. Programmable photonics: an opportunity for an accessible large-volume PIC ecosystem. IEEE J. Sel. Top. Quantum Electron. 26, 1–17 (2020). A simple techno-economic analysis of how general-purpose programmable photonic circuits can reduce the cost of prototyping photonics applications.


    Google Scholar
     

  • 98.

    Dubrovsky, M., Ball, M. & Penkovsky, B. Optical proof of work. Preprint at https://arxiv.org/abs/1911.05193 (2019).

  • 99.

    Paquot, Y., Schroeder, J., Pelusi, M. D. & Eggleton, B. J. All-optical hash code generation and verification for low latency communications. Opt. Express 21, 23873 (2013).

    ADS 

    Google Scholar
     

  • 100.

    Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2019).

    ADS 

    Google Scholar
     

  • 101.

    Norberg, E. J., Guzzon, R. S., Parker, J. S., Johansson, L. A. & Coldren, L. A. Programmable photonic microwave filters monolithically integrated in InP-InGaAsP. J. Light. Technol. 29, 1611–1619 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 102.

    Wang, J. et al. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip. Nat. Commun. 6, 5957 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 103.

    Burla, M. et al. On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing. Opt. Express 19, 21475 (2011).

    ADS 

    Google Scholar
     

  • 104.

    Liu, L. et al. Photonic measurement of microwave frequency using a silicon microdisk resonator. Opt. Commun. 335, 266–270 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 105.

    Perez-Lopez, D., Sanchez, E. & Capmany, J. Programmable true-time delay lines using integrated waveguide meshes. J. Light. Technol. 36, 4591–4601 2018.

    ADS 
    CAS 

    Google Scholar
     

  • 106.

    Novak, D. et al. Radio-over-fiber technologies for emerging wireless systems. IEEE J. Quantum Electron. 52, 0600311 (2016).


    Google Scholar
     

  • 107.

    Behroozpour, B., Sandborn, P. A. M., Wu, M. C. & Boser, B. E. Lidar system architectures and circuits. IEEE Commun. Mag. 55, 135–142 (2017).


    Google Scholar
     

  • 108.

    Heck, M. J. R. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering. Nanophotonics 6, 93–107 (2017).

    CAS 

    Google Scholar
     

  • 109.

    Van Acoleyen, K. Efficient light collection and direction-of-arrival estimation using a photonic integrated circuit. Photonics 24, 933–935 (2012).


    Google Scholar
     

  • 110.

    Miller, D. A. B. Establishing optimal wave communication channels automatically. J. Light. Technol. 31, 3987–3994 (2013).

    ADS 

    Google Scholar
     

  • 111.

    Luan, E., Shoman, H., Ratner, D. M., Cheung, K. C. & Chrostowski, L. Silicon photonic biosensors using label-free detection. Sensors 18, 3519 (2018).


    Google Scholar
     

  • 112.

    Subramanian, A. Z. et al. Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip. Photon. Res. 3, B47–B59 (2015).

    CAS 

    Google Scholar
     

  • 113.

    Li, Y. et al. Six-beam homodyne laser Doppler vibrometry based on silicon photonics technology. Opt. Express 26, 3638 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 114.

    Trimberger, S. M. Three ages of FPGAs: a retrospective on the first thirty years of FPGA technology. Proc. IEEE 103, 318–331 (2015).


    Google Scholar
     

  • 115.

    Mohomed, I. & Dutta, P. The age of DIY and dawn of the maker movement. Mob. Comput. Commun. Rev. 18, 41–43 (2015).


    Google Scholar
     

  • 116.

    Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 7, 79 (2018).


    Google Scholar
     

  • 117.

    Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 118.

    Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 119.

    Steinbrecher, G. R., Olson, J. P., Englund, D. & Carolan, J. Quantum optical neural networks. npj Quantum Inf. 5, 60 (2019).

    ADS 

    Google Scholar
     

  • 120.

    Miatto, F. M., Epping, M. & Lütkenhaus, N. Hamiltonians for one-way quantum repeaters. Quantum 2, 75 (2018).


    Google Scholar
     

  • Products You May Like

    Articles You May Like

    Missing Pieces of Decarbonization Puzzle Realized
    Space Force official: Launch scrubs are no reason to despair
    Daily briefing: How the uncrushable beetle got so strong
    Intel drops on weak results for its data center group
    NASA Probe OSIRIS-REx Briefly Touches Asteroid Bennu to Collect Rare Samples

    Leave a Reply

    Your email address will not be published. Required fields are marked *