Probing the critical nucleus size for ice formation with graphene oxide nanosheets

Nature



  • 1.

    Sosso, G. C. et al. Crystal nucleation in liquids: open questions and future challenges in molecular dynamics simulations. Chem. Rev. 116, 7078–7116 (2016).




  • 2.

    Gallo, P. et al. Water: a tale of two liquids. Chem. Rev. 116, 7463–7500 (2016).




  • 3.

    Zhang, Z. & Liu, X. Y. Control of ice nucleation: freezing and antifreeze strategies. Chem. Soc. Rev. 47, 7116–7139 (2018).




  • 4.

    Kiselev, A. et al. Active sites in heterogeneous ice nucleation—the example of K-rich feldspars. Science 355, 367–371 (2017).




  • 5.

    He, Z., Liu, K. & Wang, J. Bioinspired materials for controlling ice nucleation, growth, and recrystallization. Acc. Chem. Res. 51, 1082–1091 (2018).




  • 6.

    Moore, E. B. & Molinero, V. Structural transformation in supercooled water controls the crystallization rate of ice. Nature 479, 506–508 (2011).




  • 7.

    Matsumoto, M., Saito, S. & Ohmine, I. Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing. Nature 416, 409–413 (2002).




  • 8.

    Fitzner, M., Sosso, G. C., Pietrucci, F., Pipolo, S. & Michaelides, A. Pre-critical fluctuations and what they disclose about heterogeneous crystal nucleation. Nat. Commun. 8, 2257 (2017).




  • 9.

    Pereyra, R. G., Szleifer, I. & Carignano, M. A. Temperature dependence of ice critical nucleus size. J. Chem. Phys. 135, 034508 (2011).




  • 10.

    Pradzynski, C. C., Forck, R. M., Zeuch, T., Slavicek, P. & Buck, U. A fully size-resolved perspective on the crystallization of water clusters. Science 337, 1529–1532 (2012).




  • 11.

    Xiao, Q. et al. What experiments on pinned nanobubbles can tell about the critical nucleus for bubble nucleation. Eur. Phys. J. E 40, 114 (2017).




  • 12.

    Lupi, L., Peters, B. & Molinero, V. Pre-ordering of interfacial water in the pathway of heterogeneous ice nucleation does not lead to a two-step crystallization mechanism. J. Chem. Phys. 145, 211910 (2016).




  • 13.

    Cabriolu, R. & Li, T. Ice nucleation on carbon surface supports the classical theory for heterogeneous nucleation. Phys. Rev. E 91, 052402 (2015).




  • 14.

    Lupi, L. et al. Role of stacking disorder in ice nucleation. Nature 551, 218–222 (2017).




  • 15.

    Russo, J., Romano, F. & Tanaka, H. New metastable form of ice and its role in the homogeneous crystallization of water. Nat. Mater. 13, 733–739 (2014).




  • 16.

    Palmer, J. C. et al. Metastable liquid−liquid transition in a molecular model of water. Nature 510, 385–388 (2014).




  • 17.

    Fletcher, N. H. Size effect in heterogeneous nucleation. J. Chem. Phys. 29, 572–576 (1958).




  • 18.

    Welti, A., Lüönd, F., Stetzer, O. & Lohmann, U. Influence of particle size on the ice nucleating ability of mineral dusts. Atmos. Chem. Phys. 9, 6705–6715 (2009).




  • 19.

    Liou, Y. C., Tocilj, A., Davies, P. L. & Jia, Z. C. Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein. Nature 406, 322–324 (2000).


  • 20.

    Garnham, C. P., Campbell, R. L., Walker, V. K. & Davies, P. L. Novel dimeric beta-helical model of an ice nucleation protein with bridged active sites. BMC Struct. Biol. 11, (2011).




  • 21.

    Liu, K. et al. Janus effect of antifreeze proteins on ice nucleation. Proc. Natl Acad. Sci. USA 113, 14739–14744 (2016).




  • 22.

    Whale, T. F., Rosillo-Lopez, M., Murray, B. J. & Salzmann, C. G. Ice nucleation properties of oxidized carbon nanomaterials. J. Phys. Chem. Lett. 6, 3012–3016 (2015).




  • 23.

    Häusler, T. et al. Ice nucleation activity of graphene and graphene oxides. J. Phys. Chem. C 122, 8182–8190 (2018).




  • 24.

    Lupi, L., Hudait, A. & Molinero, V. Heterogeneous nucleation of ice on carbon surfaces. J. Am. Chem. Soc. 136, 3156–3164 (2014).




  • 25.

    Zheng, Y., Su, C., Lu, J. & Loh, K. P. Room-temperature ice growth on graphite seeded by nano-graphene oxide. Angew. Chem. 52, 8708–8712 (2013).




  • 26.

    Roscoe, R. B. How does a rain drop grow? Science 129, 123–129 (1959).




  • 27.

    Koop, T., Luo, B. P., Tsias, A. & Peter, T. Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature 406, 611–614 (2000).




  • 28.

    Li, T. S., Donadio, D., Russo, G. & Galli, G. Homogeneous ice nucleation from supercooled water. Phys. Chem. Chem. Phys. 13, 19807–19813 (2011).




  • 29.

    Němec, T. Estimation of ice–water interfacial energy based on pressure-dependent formulation of classical nucleation theory. Chem. Phys. Lett. 583, 64–68 (2013).




  • 30.

    Eberle, P., Tiwari, M. K., Maitra, T. & Poulikakos, D. Rational nanostructuring of surfaces for extraordinary icephobicity. Nanoscale 6, 4874–4881 (2014).




  • 31.

    Tu, Y. et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. 8, 594–601 (2013).




  • 32.

    Geng, H. et al. Graphene oxide restricts growth and recrystallization of ice crystals. Angew. Chem. 56, 997–1001 (2017).




  • 33.

    Rourke, J. P. et al. The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets. Angew. Chem. 50, 3173–3177 (2011).




  • 34.

    Fan, X. et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv. Mater. 20, 4490–4493 (2008).




  • 35.

    Bai, G. et al. Self-assembly of ceria/graphene oxide composite films with ultra-long antiwear lifetime under a high applied load. Carbon 84, 197–206 (2015).




  • 36.

    Du, N., Liu, X. Y. & Hew, C. L. Ice nucleation inhibition—mechanism of antifreeze by antifreeze protein. J. Biol. Chem. 278, 36000–36004 (2003).

  • Products You May Like

    Articles You May Like

    Mike Griffin critical of U.S. response to China’s advances in hypersonic weapons
    Elon Musk urges Tesla employees to reduce cost of vehicle deliveries
    Record number of first-time observers get Hubble telescope time
    Technology Trends 2022: Crypto, Web 3.0, Big Tech Regulation, and Meatless Meat
    Deadlier Omicron Variant Prompted US to Declare Travel Restrictions from Certain African Countries

    Leave a Reply