Intraplate volcanism originating from upwelling hydrous mantle transition zone

Nature



  • 1.

    Chen, Y., Zhang, Y., Graham, D., Su, S. & Deng, J. Geochemistry of Cenozoic basalts and mantle xenoliths in northeast China. Lithos 96, 108–126 (2007).




  • 2.

    Wang, X.-C., Wilde, S. A., Li, Q.-L. & Yang, Y.-N. Continental flood basalts derived from the hydrous mantle transition zone. Nat. Commun. 6, 7700 (2015).




  • 3.

    Chen, C. et al. Mantle transition zone, stagnant slab and intraplate volcanism in northeast Asia. Geophys. J. Int. 209, 68–85 (2017).




  • 4.

    Hirano, N. et al. Volcanism in response to plate flexure. Science 313, 1426–1428 (2006).




  • 5.

    Okumura, S. & Hirano, N. Carbon dioxide emission to Earth’s surface by deep-sea volcanism. Geology 41, 1167–1170 (2013).




  • 6.

    Machida, S. et al. Petit-spot geology reveals melts in upper-most asthenosphere dragged by lithosphere. Earth Planet. Sci. Lett. 426, 267–279 (2015).




  • 7.

    Pilet, S. et al. Pre-subduction metasomatic enrichment of the oceanic lithosphere induced by plate flexure. Nat. Geosci. 9, 898–903 (2016).




  • 8.

    Li, C., Van der Hilst, R. D., Meltzer, A. S. & Engdahl, E. R. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet. Sci. Lett. 274, 157–168 (2008).




  • 9.

    Tauzin, B., Debayle, E. & Wittlinger, G. Seismic evidence for a global low-velocity layer within the Earth’s upper mantle. Nat. Geosci. 3, 718–721 (2010).




  • 10.

    Fukao, Y. & Obayashi, M. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J. Geophys. Res. Solid Earth 118, 5920–5938 (2013).




  • 11.

    Liu, Z., Park, J. & Karato, S.-i. Seismological detection of low velocity anomalies surrounding the mantle transition zone in Japan subduction zone. Geophys. Res. Lett. 43, 2480–2487 (2016).




  • 12.

    Wei, S. S. & Shearer, P. M. A sporadic low-velocity layer atop the 410 km discontinuity beneath the Pacific Ocean. J. Geophys. Res. Solid Earth 122, 5144–5159 (2017).




  • 13.

    Lustrino, M. & Wilson, M. The circum-Mediterranean anorogenic Cenozoic igneous province. Earth Sci. Rev. 81, 1–65 (2007).




  • 14.

    Tang, Y. et al. Changbaishan volcanism in northeast China linked to subduction-induced mantle upwelling. Nat. Geosci. 7, 470–475 (2014).




  • 15.

    Zhao, D., Tian, Y., Lei, J., Liu, L. & Zheng, S. Seismic image and origin of the Changbai intraplate volcano in East Asia: role of big mantle wedge above the stagnant Pacific slab. Phys. Earth Planet. Inter. 173, 197–206 (2009).




  • 16.

    Karato, S.-i. Water distribution across the mantle transition zone and its implications for global material circulation. Earth Planet. Sci. Lett. 301, 413–423 (2011).




  • 17.

    Kelbert, A., Schultz, A. & Egbert, G. Global electromagnetic induction constraints on transition-zone water content variations. Nature 460, 1003–1006 (2009).




  • 18.

    Bercovici, D. & Karato, S.-i. Whole-mantle convection and the transition-zone water filter. Nature 425, 39–44 (2003).




  • 19.

    Liu, Z., Park, J. & Karato, S.-i. Seismic evidence for water transport out of the mantle transition zone beneath the European Alps. Earth Planet. Sci. Lett. 482, 93–104 (2018).




  • 20.

    Schmandt, B., Jacobsen, S. D., Becker, T. W., Liu, Z. & Dueker, K. G. Dehydration melting at the top of the lower mantle. Science 344, 1265–1268 (2014).




  • 21.

    Hier-Majumder, S. & Tauzin, B. Pervasive upper mantle melting beneath the western US. Earth Planet. Sci. Lett. 463, 25–35 (2017).


  • 22.

    Mao, Z. et al. Elasticity of hydrous wadsleyite to 12 GPa: implications for Earth’s transition zone. Geophys. Res. Lett. 35, https://doi.org/10.1029/2008GL035618 (2008).




  • 23.

    Irifune, T. et al. Sound velocities of majorite garnet and the composition of the mantle transition region. Nature 451, 814–817 (2008).




  • 24.

    Bezada, M., Faccenda, M. & Toomey, D. Representing anisotropic subduction zones with isotropic velocity models: a characterization of the problem and some steps on a possible path forward. Geochem. Geophys. Geosyst. 17, 3164–3189 (2016).




  • 25.

    Obayashi, M., Sugioka, H., Yoshimitsu, J. & Fukao, Y. High temperature anomalies oceanward of subducting slabs at the 410-km discontinuity. Earth Planet. Sci. Lett. 243, 149–158 (2006).




  • 26.

    Zhao, D. & Tian, Y. Changbai intraplate volcanism and deep earthquakes in East Asia: a possible link? Geophys. J. Int. 195, 706–724 (2013).




  • 27.

    Cline, C. J. II, Faul, U. H., David, E. C., Berry, A. J. & Jackson, I. Redox-influenced seismic properties of upper-mantle olivine. Nature 555, 355–358 (2018).




  • 28.

    Xu, W., Lithgow-Bertelloni, C., Stixrude, L. & Ritsema, J. The effect of bulk composition and temperature on mantle seismic structure. Earth Planet. Sci. Lett. 275, 70–79 (2008).




  • 29.

    Litasov, K. D., Shatskiy, A., Ohtani, E. & Yaxley, G. M. Solidus of alkaline carbonatite in the deep mantle. Geology 41, 79–82 (2013).




  • 30.

    Kuritani, T. et al. Buoyant hydrous mantle plume from the mantle transition zone. Sci. Rep. 9, 6549 (2019).




  • 31.

    Green, H. W., II, Chen, W.-P. & Brudzinski, M. R. Seismic evidence of negligible water carried below 400-km depth in subducting lithosphere. Nature 467, 828–831 (2010).




  • 32.

    Mazza, S. E. et al. Sampling the volatile-rich transition zone beneath Bermuda. Nature 569, 398–403 (2019).




  • 33.

    Wang, X.-J. et al. Mantle transition zone-derived EM1 component beneath NE China: geochemical evidence from Cenozoic potassic basalts. Earth Planet. Sci. Lett. 465, 16–28 (2017).




  • 34.

    Kuritani, T., Ohtani, E. & Kimura, J. I. Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation. Nat. Geosci. 4, 713–716 (2011).




  • 35.

    Rohrbach, A. & Schmidt, M. W. Redox freezing and melting in the Earth’s deep mantle resulting from carbon–iron redox coupling. Nature 472, 209–212 (2011).




  • 36.

    Soltanmohammadi, A. et al. Transport of volatile-rich melt from the mantle transition zone via compaction pockets: implications for mantle metasomatism and the origin of alkaline lavas in the Turkish–Iranian plateau. J. Petrol. 59, 2273–2310 (2018).




  • 37.

    Gerya, T. V. & Yuen, D. A. Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties. Phys. Earth Planet. Inter. 140, 293–318 (2003).




  • 38.

    Karato, S.-i. & Wu, P. Rheology of the upper mantle: a synthesis. Science 260, 771–778 (1993).




  • 39.

    Kameyama, M., Yuen, D. A. & Karato, S.-i. Thermal-mechanical effects of low-temperature plasticity (the Peierls mechanism) on the deformation of a viscoelastic shear zone. Earth Planet. Sci. Lett. 168, 159–172 (1999).




  • 40.

    Connolly, J. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005).




  • 41.

    Litasov, K. Physicochemical conditions for melting in the Earth’s mantle containing a C–O–H fluid (from experimental data). Russ. Geol. Geophys. 52, 475–492 (2011).




  • 42.

    Andrault, D. et al. Melting of subducted basalt at the core-mantle boundary. Science 344, 892–895 (2014).




  • 43.

    Zhang, J. & Herzberg, C. Melting experiments on anhydrous peridotite KLB-1 from 5.0 to 22.5 GPa. J. Geophys. Res. Solid Earth 99, 17729–17742 (1994).




  • 44.

    Nomura, R. et al. Low core–mantle boundary temperature inferred from the solidus of pyrolite. Science 343, 522–525 (2014).




  • 45.

    Sakamaki, T., Suzuki, A. & Ohtani, E. Stability of hydrous melt at the base of the Earth’s upper mantle. Nature 439, 192–194 (2006).




  • 46.

    Jing, Z. & Karato, S.-i. Effect of H2O on the density of silicate melts at high pressures: static experiments and the application of a modified hard-sphere model of equation of state. Geochim. Cosmochim. Acta 85, 357–372 (2012).




  • 47.

    Guillot, B. & Sator, N. A computer simulation study of natural silicate melts. Part II: High pressure properties. Geochim. Cosmochim. Acta 71, 4538–4556 (2007).




  • 48.

    Yoshino, T., Nishihara, Y. & Karato, S.-i. Complete wetting of olivine grain boundaries by a hydrous melt near the mantle transition zone. Earth Planet. Sci. Lett. 256, 466–472 (2007).




  • 49.

    Freitas, D. et al. Experimental evidence supporting a global melt layer at the base of the Earth’s upper mantle. Nat. Commun. 8, 2186 (2017).




  • 50.

    Sizova, E., Gerya, T., Brown, M. & Perchuk, L. Subduction styles in the Precambrian: insight from numerical experiments. Lithos 116, 209–229 (2010).




  • 51.

    Keller, T., May, D. A. & Kaus, B. J. P. Numerical modelling of magma dynamics coupled to tectonic deformation of lithosphere and crust. Geophys. J. Int. 195, 1406–1442 (2013).


  • 52.

    Lehmann, R. Modelling of Magma Dynamics from the Mantle to the Surface (Universitätsbibliothek Mainz, 2016).




  • 53.

    Iwamori, H. Phase relations of peridotites under H2O-saturated conditions and ability of subducting plates for transportation of H2O. Earth Planet. Sci. Lett. 227, 57–71 (2004).


  • 54.

    van Keken, P. E., Hacker, B. R., Syracuse, E. M. & Abers, G. A. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J. Geophys. Res. Solid Earth 116, https://doi.org/10.1029/2010JB007922 (2011).




  • 55.

    Faccenda, M., Gerya, T. V. & Burlini, L. Deep slab hydration induced by bending-related variations in tectonic pressure. Nat. Geosci. 2, 790–793 (2009).


  • 56.

    Faccenda, M., Gerya, T. V., Mancktelow, N. S. & Moresi, L. Fluid flow during slab unbending and dehydration: implications for intermediate-depth seismicity, slab weakening and deep water recycling. Geochem. Geophys. Geosystems 13, Q01010 (2012).




  • 57.

    Takei, Y. Effect of pore geometry on V
    p/V
    s: from equilibrium geometry to crack. J. Geophys. Res. Solid Earth 107, 2043 (2002).




  • 58.

    von Bargen, N. & Waff, H. S. Permeabilities, interfacial areas and curvatures of partially molten systems: results of numerical computations of equilibrium microstructures. J. Geophys. Res. Solid Earth 91, 9261–9276 (1986).




  • 59.

    Litasov, K. D. & Ohtani, E. Phase relations in hydrous MORB at 18–28 GPa: implications for heterogeneity of the lower mantle. Phys. Earth Planet. Inter. 150, 239–263 (2005).




  • 60.

    Pradhan, G. K. et al. Melting of MORB at core–mantle boundary. Earth Planet. Sci. Lett. 431, 247–255 (2015).




  • 61.

    Andrault, D. et al. Solidus and liquidus profiles of chondritic mantle: implication for melting of the Earth across its history. Earth Planet. Sci. Lett. 304, 251–259 (2011).




  • 62.

    Andrault, D. et al. Deep and persistent melt layer in the Archaean mantle. Nat. Geosci. 11, 139–143 (2018).




  • 63.

    Fiquet, G. et al. Melting of peridotite to 140 gigapascals. Science 329, 1516–1518 (2010).




  • 64.

    Boukaré, C. E., Ricard, Y. & Fiquet, G. Thermodynamics of the MgO–FeO–SiO2 system up to 140 GPa: application to the crystallization of Earth’s magma ocean. J. Geophys. Res. Solid Earth 120, 6085–6101 (2015).




  • 65.

    Baron, M. A. et al. Experimental constraints on melting temperatures in the MgO–SiO2 system at lower mantle pressures. Earth Planet. Sci. Lett. 472, 186–196 (2017).




  • 66.

    Walter, M. J. et al. The stability of hydrous silicates in Earth’s lower mantle: experimental constraints from the systems MgO–SiO2–H2O and MgO–Al2O3–SiO2–H2O. Chem. Geol. 418, 16–29 (2015).




  • 67.

    Sanloup, C. et al. Structure and density of molten fayalite at high pressure. Geochim. Cosmochim. Acta 118, 118–128 (2013).




  • 68.

    Bajgain, S., Ghosh, D. B. & Karki, B. B. Structure and density of basaltic melts at mantle conditions from first-principles simulations. Nat. Commun. 6, 8578 (2015).




  • 69.

    Agee, C. B. Crystal-liquid density inversions in terrestrial and lunar magmas. Phys. Earth Planet. Inter. 107, 63–74 (1998).




  • 70.

    Petitgirard, S. et al. Fate of MgSiO3 melts at core–mantle boundary conditions. Proc. Natl Acad. Sci. USA 112, 14186–14190 (2015).

  • Products You May Like

    Articles You May Like

    Getting started with building an audience in the creator economy
    Can E-Cigarettes Help People Quit Smoking? This Research Says No
    Stacking order in a 2D magnet produces Dirac magnons
    Donna Strickland on her life-changing Nobel prize, previewing Black in Physics Week, nuclear fusion in stars
    Smoke From Nuclear War May Trigger Climate Change, Threatening Global Food Supplies Even After 15 Years

    Leave a Reply