Field-resolved infrared spectroscopy of biological systems

Nature



  • 1.

    Geyer, P. E., Holdt, L. M., Teupser, D. & Mann, M. Revisiting biomarker discovery by plasma proteomics. Mol. Syst. Biol. 13, 942 (2017).


  • 2.

    Barth, A. & Haris, P. I. Biological and Biomedical Infrared Spectroscopy (IOS Press, 2009).


  • 3.

    Lasch, P. & Kneipp, J. Biomedical Vibrational Spectroscopy (Wiley, 2010).




  • 4.

    Baker, M. J. et al. Developing and understanding biofluid vibrational spectroscopy: a critical review. Chem. Soc. Rev. 45, 1803–1818 (2016).




  • 5.

    Hasin, Y., Seldin, M. & Lusis, A. Multi-omics approaches to disease. Genome Biol. 18, 83 (2017).




  • 6.

    Chen, R. et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148, 1293–1307 (2012).




  • 7.

    Türker-Kaya, S. & Huck, C. A review of mid-infrared and near-infrared imaging: principles, concepts and applications in plant tissue analysis. Molecules 22, 168 (2017).




  • 8.

    Doherty, J., Cinque, G. & Gardner, P. Single-cell analysis using Fourier transform infrared microspectroscopy. Appl. Spectrosc. Rev. 52, 560–587 (2017).




  • 9.

    Laubereau, A. & Kaiser, W. Vibrational dynamics of liquids and solids investigated by picosecond light pulses. Rev. Mod. Phys. 50, 607–665 (1978).




  • 10.

    Sell, A., Scheu, R., Leitenstorfer, A. & Huber, R. Field-resolved detection of phase-locked infrared transients from a compact Er:fiber system tunable between 55 and 107 THz. Appl. Phys. Lett. 93, 251107 (2008).




  • 11.

    Coddington, I., Swann, W. C. & Newbury, N. R. Time-domain spectroscopy of molecular free-induction decay in the infrared. Opt. Lett. 35, 1395–1397 (2010).




  • 12.

    Kowligy, A. S. et al. Infrared electric field sampled frequency comb spectroscopy. Sci. Adv. 5, eaaw8794 (2019).




  • 13.

    Wu, Q. & Zhang, X.-C. Free-space electro-optic sampling of terahertz beams. Appl. Phys. Lett. 67, 3523–3525 (1995).




  • 14.

    Nahata, A., Weling, A. S. & Heinz, T. F. A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling. Appl. Phys. Lett. 69, 2321–2323 (1996).




  • 15.

    Pupeza, I. et al. High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate. Nat. Photon. 9, 721–724 (2015).




  • 16.

    Gianazza, E., Miller, I., Palazzolo, L., Parravicini, C. & Eberini, I. With or without you—proteomics with or without major plasma/serum proteins. J. Proteomics 140, 62–80 (2016).




  • 17.

    Dębska, B. & Guzowska-Świder, B. Fuzzy definition of molecular fragments in chemical structures. J. Chem. Inf. Comput. Sci. 40, 325–329 (2000).


  • 18.

    Demtröder, W. Molecular Physics (Wiley, 2005).




  • 19.

    Movasaghi, Z., Rehman, S. & ur Rehman, Dr. I. Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl. Spectrosc. Rev. 43, 134–179 (2008).


  • 20.

    Griffiths, P. R. & De Haseth, J. A. Fourier Transform Infrared Spectrometry (Wiley, 2007).




  • 21.

    Keilmann, F., Gohle, C. & Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 29, 1542–1544 (2004).




  • 22.

    Newbury, N. R., Coddington, I. & Swann, W. Sensitivity of coherent dual-comb spectroscopy. Opt. Express 18, 7929–7945 (2010).




  • 23.

    Villares, G., Hugi, A., Blaser, S. & Faist, J. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. Nat. Commun. 5, 5192 (2014).




  • 24.

    Schwaighofer, A. et al. Beyond Fourier transform infrared spectroscopy: external cavity quantum cascade laser-based mid-infrared transmission spectroscopy of proteins in the amide I and amide II region. Anal. Chem. 90, 7072–7079 (2018).




  • 25.

    Haas, J., Catalán, E. V., Piron, P., Karlsson, M. & Mizaikoff, B. Infrared spectroscopy based on broadly tunable quantum cascade lasers and polycrystalline diamond waveguides. Analyst 143, 5112–5119 (2018).




  • 26.

    Ollesch, J. et al. An infrared spectroscopic blood test for non-small cell lung carcinoma and subtyping into pulmonary squamous cell carcinoma or adenocarcinoma. Biomed. Spectrosc. Imaging 5, 129–144 (2016).




  • 27.

    Brandstetter, M., Volgger, L., Genner, A., Jungbauer, C. & Lendl, B. Direct determination of glucose, lactate and triglycerides in blood serum by a tunable quantum cascade laser-based mid-IR sensor. Appl. Phys. B 110, 233–239 (2013).




  • 28.

    Baker, M. J. et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat. Protocols 9, 1771–1791 (2014).




  • 29.

    Martin, M. C. et al. 3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography. Nat. Methods 10, 861–864 (2013).




  • 30.

    Rohleder, D. et al. Comparison of mid-infrared and Raman spectroscopy in the quantitative analysis of serum. J. Biomed. Opt. 10, 031108 (2005).




  • 31.

    Bhargava, R. Infrared spectroscopic imaging: the next generation. Appl. Spectrosc. 66, 1091–1120 (2012).




  • 32.

    Quaroni, L., Zlateva, T., Wehbe, K. & Cinque, G. Infrared imaging of small molecules in living cells: from in vitro metabolic analysis to cytopathology. Faraday Discuss. 187, 259–271 (2016).




  • 33.

    Bonnier, F. et al. Ultra-filtration of human serum for improved quantitative analysis of low molecular weight biomarkers using ATR-IR spectroscopy. Analyst 142, 1285–1298 (2017).




  • 34.

    Haas, J. & Mizaikoff, B. Advances in mid-infrared spectroscopy for chemical analysis. Annu. Rev. Anal. Chem. 9, 45–68 (2016).




  • 35.

    Lu, R. et al. High-sensitivity infrared attenuated total reflectance sensors for in situ multicomponent detection of volatile organic compounds in water. Nat. Protocols 11, 377–386 (2016).




  • 36.

    Haase, K., Kröger-Lui, N., Pucci, A., Schönhals, A. & Petrich, W. Advancements in quantum cascade laser-based infrared microscopy of aqueous media. Faraday Discuss. 187, 119–134 (2016).




  • 37.

    Haase, K., Kröger-Lui, N., Pucci, A., Schönhals, A. & Petrich, W. Real-time mid-infrared imaging of living microorganisms. J. Biophoton. 9, 61–66 (2016).




  • 38.

    Gaida, C. et al. Watt-scale super-octave mid-infrared intrapulse difference frequency generation. Light Sci. Appl. 7, 94 (2018).




  • 39.

    Seidel, M. et al. Multi-watt, multi-octave, mid-infrared femtosecond source. Science Advances 4, eaaq1526 (2018).




  • 40.

    Butler, T. P. et al. Watt-scale 50-MHz source of single-cycle waveform-stable pulses in the molecular fingerprint region. Opt. Lett. 44, 1730–1733 (2019).


  • 41.

    Pupeza, I. et al. Field-resolved spectroscopy in the molecular fingerprint region. In Lasers and Electro-Optics Europe & European Quantum Electronics Conf. (CLEO/Europe-EQEC) https://doi.org/10.1109/CLEOE-EQEC.2017.8086859 (IEEE, 2017).


  • 42.

    Huber, M. et al. Detection sensitivity of field-resolved spectroscopy in the molecular fingerprint region. In Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) https://doi.org/10.1109/CLEOE-EQEC.2017.8086921 (IEEE, 2017).




  • 43.

    Timmers, H. et al. Molecular fingerprinting with bright, broadband infrared frequency combs. Optica 5, 727–732 (2018).




  • 44.

    Muraviev, A. V., Smolski, V. O., Loparo, Z. E. & Vodopyanov, K. L. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs. Nat. Photon. 12, 209–214 (2018).




  • 45.

    Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).


  • 46.

    Ye, J. & Cundiff, S. T. Femtosecond Optical Frequency Comb: Principle, Operation, And Applications (Springer, 2005).




  • 47.

    Schweinberger, W. et al. Interferometric delay tracking for low-noise Mach-Zehnder-type scanning measurements. Opt. Express 27, 4789–4798 (2019).




  • 48.

    Schubert, O. et al. Rapid-scan acousto-optical delay line with 34 kHz scan rate and 15 as precision. Opt. Lett. 38, 2907–2910 (2013).




  • 49.

    Birarda, G. et al. IR-Live: fabrication of a low-cost plastic microfluidic device for infrared spectromicroscopy of living cells. Lab Chip 16, 1644–1651 (2016).




  • 50.

    Max, J.-J. & Chapados, C. Glucose and fructose hydrates in aqueous solution by IR spectroscopy. J. Phys. Chem. A 111, 2679–2689 (2007).




  • 51.

    Tsurumachi, N., Fuji, T., Kawato, S., Hattori, T. & Nakatsuka, H. Interferometric observation of femtosecond free induction decay. Opt. Lett. 19, 1867–1869 (1994).




  • 52.

    Gallot, G. & Grischkowsky, D. Electro-optic detection of terahertz radiation. J. Opt. Soc. Am. B 16, 1204–1212 (1999).




  • 53.

    Hobbs, P. C. D. Ultrasensitive laser measurements without tears. Appl. Opt. 36, 903–920 (1997).




  • 54.

    Foltynowicz, A., Ban, T., Masłowski, P., Adler, F. & Ye, J. Quantum-noise-limited optical frequency comb spectroscopy. Phys. Rev. Lett. 107, 233002 (2011).




  • 55.

    Buberl, T. Broadband interferometric subtraction of optical fields. Opt. Express 27, 2432–2443 (2019).




  • 56.

    Tomberg, T., Muraviev, A., Ru, Q. & Vodopyanov, K. L. Background-free broadband absorption spectroscopy based on interferometric suppression with a sign-inverted waveform. Optica 6, 147–151 (2019).




  • 57.

    Fritsch, K., Poetzlberger, M., Pervak, V., Brons, J. & Pronin, O. All-solid-state multipass spectral broadening to sub-20 fs. Opt. Lett. 43, 4643–4646 (2018).




  • 58.

    Schulte, J., Sartorius, T., Weitenberg, J., Vernaleken, A. & Russbueldt, P. Nonlinear pulse compression in a multi-pass cell. Opt. Lett. 41, 4511–4514 (2016).




  • 59.

    Huber, M. et al. Active intensity noise suppression for a broadband mid-infrared laser source. Opt. Express 25, 22499–22509 (2017).




  • 60.

    Lanin, A. A., Voronin, A. A., Fedotov, A. B. & Zheltikov, A. M. Time-domain spectroscopy in the mid-infrared. Sci. Rep. 4, 1–8 (2014).

  • Products You May Like

    Articles You May Like

    NASA Psyche Mission: Charting a Metallic World
    We’re going to need a bigger boat: Climate strategy beyond COP
    Black Carbon: How Long Do These Heat-Absorbing Particles Linger in the Atmosphere?
    Scientists Unlock the Maternity Methods of Spider Mummies From 99 Million Years Ago!
    Microwave imaging could provide safer, more comfortable breast cancer screening

    Leave a Reply

    Your email address will not be published. Required fields are marked *