Deterministic multi-qubit entanglement in a quantum network

Nature
  • 1.

    Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information 2nd edn (Cambridge Univ. Press, 2010).

  • 2.

    Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 3.

    Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Jiang, L., Taylor, J. M., Sørensen, A. S. & Lukin, M. D. Distributed quantum computation based on small quantum registers. Phys. Rev. A 76, 062323 (2007).

    ADS 

    Google Scholar
     

  • 5.

    Kurpiers, P. et al. Deterministic quantum state transfer and remote entanglement using microwave photons. Nature 558, 264–267 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Axline, C. J. et al. On-demand quantum state transfer and entanglement between remote microwave cavity memories. Nat. Phys. 14, 705–710 (2018).

    CAS 

    Google Scholar
     

  • 7.

    Campagne-Ibarcq, P. et al. Deterministic remote entanglement of superconducting circuits through microwave two-photon transitions. Phys. Rev. Lett. 120, 200501 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Leung, N. et al. Deterministic bidirectional communication and remote entanglement generation between superconducting qubits. npj Quantum Inf. 5, 18 (2019).

    ADS 

    Google Scholar
     

  • 9.

    Zhong, Y. P. et al. Violating Bell’s inequality with remotely connected superconducting qubits. Nat. Phys. 15, 741–744 (2019).

    CAS 

    Google Scholar
     

  • 10.

    Humphreys, P. C. et al. Deterministic delivery of remote entanglement on a quantum network. Nature 558, 268–273 (2018); publisher correction 562, E2 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Bienfait, A. et al. Phonon-mediated quantum state transfer and remote qubit entanglement. Science 364, 368–371 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Greenberger, D. M., Horne, M. A., Shimony, A. & Zeilinger, A. Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • 13.

    Neeley, M. et al. Generation of three-qubit entangled states using superconducting phase qubits. Nature 467, 570–573 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    DiCarlo, L. et al. Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature 467, 574–578 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Gühne, O. & Seevinck, M. Separability criteria for genuine multiparticle entanglement. New J. Phys. 12, 053002 (2010).

    ADS 
    MATH 

    Google Scholar
     

  • 16.

    Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014).

    ADS 

    Google Scholar
     

  • 17.

    Chou, K. S. et al. Deterministic teleportation of a quantum gate between two logical qubits. Nature 561, 368–373 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Rosenberg, D. et al. Solid-state qubits: 3D integration and packaging. IEEE Microw. Mag. 21, 72–85 (2020).


    Google Scholar
     

  • 20.

    Magnard, P. et al. Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems. Phys. Rev. Lett. 125, 260502 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Bochmann, J., Vainsencher, A., Awschalom, D. D. & Cleland, A. N. Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712–716 (2013).

    CAS 

    Google Scholar
     

  • 22.

    Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Liao, S.-K. et al. Satellite-to-ground quantum key distribution. Nature 549, 43–47 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Chang, H.-S. et al. Remote entanglement via adiabatic passage using a tunably-dissipative quantum communication system. Phys. Rev. Lett. 124, 240502 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Burkhart, L. D. et al. Error-detected state transfer and entanglement in a superconducting quantum network. Preprint at https://arxiv.org/abs/2004.06168 (2020).

  • 27.

    Chen, Y. et al. Qubit architecture with high coherence and fast tunable coupling. Phys. Rev. Lett. 113, 220502 (2014).

    ADS 
    PubMed 

    Google Scholar
     

  • 28.

    Wang, Y.-D. & Clerk, A. A. Using dark modes for high-fidelity optomechanical quantum state transfer. New J. Phys. 14, 105010 (2012).

    ADS 

    Google Scholar
     

  • 29.

    Strauch, F. W. et al. Quantum logic gates for coupled superconducting phase qubits. Phys. Rev. Lett. 91, 167005 (2003).

    ADS 
    PubMed 

    Google Scholar
     

  • 30.

    Julsgaard, B., Kozhekin, A. & Polzik, E. S. Experimental long-lived entanglement of two macroscopic objects. Nature 413, 400–403 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Chou, C.-W. et al. Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature 438, 828–832 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Lee, K. C. et al. Entangling macroscopic diamonds at room temperature. Science 334, 1253–1256 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Roch, N. et al. Observation of measurement-induced entanglement and quantum trajectories of remote superconducting qubits. Phys. Rev. Lett. 112, 170501 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Narla, A. et al. Robust concurrent remote entanglement between two superconducting qubits. Phys. Rev. X 6, 031036 (2016).


    Google Scholar
     

  • 38.

    Dickel, C. et al. Chip-to-chip entanglement of transmon qubits using engineered measurement fields. Phys. Rev. B 97, 064508 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 39.

    Kurpiers, P. et al. Quantum communication with time-bin encoded microwave photons. Phys. Rev. Appl. 12, 044067 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 40.

    Sillanpää, M. A., Park, J. I. & Simmonds, R. W. Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 449, 438–442 (2007).

    ADS 
    PubMed 

    Google Scholar
     

  • 41.

    Majer, J. et al. Coupling superconducting qubits via a cavity bus. Nature 449, 443–447 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Baksic, A., Ribeiro, H. & Clerk, A. A. Speeding up adiabatic quantum state transfer by using dressed states. Phys. Rev. Lett. 116, 230503 (2016).

    ADS 
    PubMed 

    Google Scholar
     

  • 43.

    Zhou, B. B. et al. Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system. Nat. Phys. 13, 330–334 (2017).

    CAS 

    Google Scholar
     

  • 44.

    Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • 45.

    Korotkov, A. N. Flying microwave qubits with nearly perfect transfer efficiency. Phys. Rev. B 84, 014510 (2011).

    ADS 

    Google Scholar
     

  • 46.

    Sete, E. A., Mlinar, E. & Korotkov, A. N. Robust quantum state transfer using tunable couplers. Phys. Rev. B 91, 144509 (2015).

    ADS 

    Google Scholar
     

  • 47.

    Yin, Y. et al. Catch and release of microwave photon states. Phys. Rev. Lett. 110, 107001 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • 48.

    Wenner, J. et al. Catching time-reversed microwave coherent state photons with 99.4% absorption efficiency. Phys. Rev. Lett. 112, 210501 (2014).

    ADS 

    Google Scholar
     

  • 49.

    Srinivasan, S. J. et al. Time-reversal symmetrization of spontaneous emission for quantum state transfer. Phys. Rev. A 89, 033857 (2014).

    ADS 

    Google Scholar
     

  • 50.

    Pechal, M. et al. Microwave-controlled generation of shaped single photons in circuit quantum electrodynamics. Phys. Rev. X 4, 041010 (2014).


    Google Scholar
     

  • 51.

    Zeytinoğlu, S. et al. Microwave-induced amplitude-and phase-tunable qubit-resonator coupling in circuit quantum electrodynamics. Phys. Rev. A 91, 043846 (2015).

    ADS 

    Google Scholar
     

  • 52.

    Xiang, Z. L., Zhang, M., Jiang, L. & Rabl, P. Intracity quantum communication via thermal microwave networks. Phys. Rev. X 7, 011035 (2017).


    Google Scholar
     

  • 53.

    Vermersch, B., Guimond, P.-O., Pichler, H. & Zoller, P. Quantum state transfer via noisy photonic and phononic waveguides. Phys. Rev. Lett. 118, 133601 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Steffen, M. et al. Measurement of the entanglement of two superconducting qubits via state tomography. Science 313, 1423–1425 (2006).

    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Neeley, M. et al. Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state. Nat. Phys. 4, 523–526 (2008).

    CAS 

    Google Scholar
     

  • Products You May Like

    Articles You May Like

    Soyuz Rocket Honours Yuri Gagarin’s First Space Travel, Successfully Carries Three-Man Crew to ISS
    Episode 263: Simulating transformation, investing in underserved communities
    Nikon snaps up Boeing-backed supplier of 3D-printed satellite parts
    SnackMagic picks up $15M to expand from build-your-own snack boxes into a wider gifting marketplace
    Chaos Underwater Ensued as 70 Orcas Attacked and Killed Lone Blue Whale

    Leave a Reply

    Your email address will not be published. Required fields are marked *