Control of osteoblast regeneration by a train of Erk activity waves

Nature
  • 1.

    Gelens, L., Anderson, G. A. & Ferrell, J. E. Jr. Spatial trigger waves: positive feedback gets you a long way. Mol. Biol. Cell 25, 3486–3493 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 2.

    Hubaud, A., Regev, I., Mahadevan, L. & Pourquie, O. Excitable dynamics and Yap-dependent mechanical cues drive the segmentation clock. Cell 171, 668–682 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 3.

    Werner, S., Vu, H. T. & Rink, J. C. Self-organization in development, regeneration and organoids. Curr. Opin. Cell Biol. 44, 102–109 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 4.

    Sonnen, K. F. et al. Modulation of phase shift between Wnt and Notch signaling oscillations controls mesoderm segmentation. Cell 172, 1079–1090 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 5.

    Deneke, V. E. & Di Talia, S. Chemical waves in cell and developmental biology. J. Cell Biol. 217, 1193–1204 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 6.

    Chara, O., Tanaka, E. M. & Brusch, L. Mathematical modeling of regenerative processes. Curr. Top. Dev. Biol. 108, 283–317 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • 7.

    Di Talia, S. & Poss, K. D. Monitoring tissue regeneration at single-cell resolution. Cell Stem Cell 19, 428–431 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 8.

    Aman, A. J., Fulbright, A. N. & Parichy, D. M. Wnt/β-catenin regulates an ancient signaling network during zebrafish scale development. eLife 7, e37001 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 9.

    Bereiter-Hahn, J. & Zylberberg, L. Regeneration of teleost fish scale. Comp. Biochem. Physiol. Part A. Physiol. 105, 625–641 (1993).

    Article 

    Google Scholar
     

  • 10.

    Cox, B. D. et al. In toto imaging of dynamic osteoblast behaviors in regenerating skeletal bone. Curr. Biol. 28, 3937–3947 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 11.

    Iwasaki, M., Kuroda, J., Kawakami, K. & Wada, H. Epidermal regulation of bone morphogenesis through the development and regeneration of osteoblasts in the zebrafish scale. Dev. Biol. 437, 105–119 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 12.

    Sire, J. Y., Allizard, F., Babiar, O., Bourguignon, J. & Quilhac, A. Scale development in zebrafish (Danio rerio). J. Anat. 190, 545–561 (1997).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 13.

    Rasmussen, J. P., Vo, N. T. & Sagasti, A. Fish scales dictate the pattern of adult skin innervation and vascularization. Dev. Cell 46, 344–359 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 14.

    Pasqualetti, S., Banfi, G. & Mariotti, M. The zebrafish scale as model to study the bone mineralization process. J. Mol. Histol. 43, 589–595 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • 15.

    Regot, S., Hughey, J. J., Bajar, B. T., Carrasco, S. & Covert, M. W. High-sensitivity measurements of multiple kinase activities in live single cells. Cell 157, 1724–1734 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 16.

    Murray, J. D. Mathematical Biology, 3rd edn (Springer, 2002).

  • 17.

    Lake, D., Corrêa, S. A. & Müller, J. Negative feedback regulation of the ERK1/2 MAPK pathway. Cell. Mol. Life Sci. 73, 4397–4413 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 18.

    Tyson, J. J. & Keener, J. P. Singular perturbation-theory of traveling waves in excitable media. Physica D 32, 327–361 (1988).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • 19.

    Shibata, E. et al. Fgf signalling controls diverse aspects of fin regeneration. Development 143, 2920–2929 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 20.

    Sweet, E. M., Vemaraju, S. & Riley, B. B. Sox2 and Fgf interact with Atoh1 to promote sensory competence throughout the zebrafish inner ear. Dev. Biol. 358, 113–121 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 21.

    Shraiman, B. I. Mechanical feedback as a possible regulator of tissue growth. Proc. Natl Acad. Sci. USA 102, 3318–3323 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 22.

    Basan, M., Risler, T., Joanny, J. F., Sastre-Garau, X. & Prost, J. Homeostatic competition drives tumor growth and metastasis nucleation. HFSP J. 3, 265–272 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 23.

    Irvine, K. D. & Shraiman, B. I. Mechanical control of growth: ideas, facts and challenges. Development 144, 4238–4248 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 24.

    Hiratsuka, T. et al. Intercellular propagation of extracellular signal-regulated kinase activation revealed by in vivo imaging of mouse skin. eLife 4, e05178 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 25.

    Aoki, K. et al. Propagating wave of ERK activation orients collective cell migration. Dev. Cell 43, 305–317 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 26.

    Hino, N. et al. ERK-mediated mechanochemical waves direct collective cell polarization. Dev. Cell 53, 646–660 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 27.

    Ogura, Y., Wen, F. L., Sami, M. M., Shibata, T. & Hayashi, S. A switch-like activation relay of EGFR–ERK signaling regulates a wave of cellular contractility for epithelial invagination. Dev. Cell 46, 162–172 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 28.

    Lee, Y., Grill, S., Sanchez, A., Murphy-Ryan, M. & Poss, K. D. Fgf signaling instructs position-dependent growth rate during zebrafish fin regeneration. Development 132, 5173–5183 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 29.

    Nachtrab, G., Kikuchi, K., Tornini, V. A. & Poss, K. D. Transcriptional components of anteroposterior positional information during zebrafish fin regeneration. Development 140, 3754–3764 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 30.

    McKinney, S. A., Murphy, C. S., Hazelwood, K. L., Davidson, M. W. & Looger, L. L. A bright and photostable photoconvertible fluorescent protein. Nat. Methods 6, 131–133 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 31.

    Wan, J., Ramachandran, R. & Goldman, D. HB-EGF is necessary and sufficient for Müller glia dedifferentiation and retina regeneration. Dev. Cell 22, 334–347 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 32.

    Wan, J., Zhao, X. F., Vojtek, A. & Goldman, D. Retinal injury, growth factors, and cytokines converge on β-catenin and pStat3 signaling to stimulate retina regeneration. Cell Rep. 9, 285–297 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 33.

    Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-seq. Bioinformatics 25, 1105–1111 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 34.

    Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 36.

    Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 37.

    Mootha, V. K. et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115, 629–640 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 38.

    Thompson, J. D. et al. Identification and requirements of enhancers that direct gene expression during zebrafish fin regeneration. Development 147, dev191262 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 39.

    Molina, G. et al. Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages. Nat. Chem. Biol. 5, 680–687 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 40.

    Carroll, K. J. et al. Estrogen defines the dorsal–ventral limit of VEGF regulation to specify the location of the hemogenic endothelial niche. Dev. Cell 29, 437–453 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 41.

    Luu-The, V., Paquet, N., Calvo, E. & Cumps, J. Improved real-time RT–PCR method for high-throughput measurements using second derivative calculation and double correction. Biotechniques 38, 287–293 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 42.

    Amat, F. et al. Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data. Nat. Methods 11, 951–958 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 43.

    Sommer, C., Straehle, C., Kothe, U. & Hamprecht, F. A. ilastik: interactive learning and segmentation toolkit. In 2011 IEEE Symposium on Biomedical Imaging: From Nano to Macro, 230–233 (IEEE, 2011).

  • 44.

    Grossmann, C., Roos, H.-G. r. & Stynes, M. Numerical Treatment of Partial Differential Equations (Springer, 2007).

  • Products You May Like

    Articles You May Like

    Black Fly Attack! Outback Queensland Witness a Surge in Sandflies Population
    Perovskite sensor sees more like the human eye
    Parler’s website shows signs of life but mobile apps remain offline
    Supporting democracy becomes the measure of leadership
    Daily briefing: The sticky issue of honey fraud

    Leave a Reply

    Your email address will not be published. Required fields are marked *