Amygdala inhibitory neurons as loci for translation in emotional memories

Nature
  • 1.

    Fendt, M. & Fanselow, M. S. The neuroanatomical and neurochemical basis of conditioned fear. Neurosci. Biobehav. Rev. 23, 743–760 (1999).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Pavlov, I. P. Conditioned Reflexes: an Investigation of the Physiological Activity of the Cerebral Cortex (Oxford Univ. Press, 1927)

  • 3.

    Rescorla, R. A. Pavlovian conditioned inhibition. Psychol. Bull. 72, 77–94 (1969).

    Article 

    Google Scholar
     

  • 4.

    Christianson, J. P. et al. Inhibition of fear by learned safety signals: a mini-symposium review. J. Neurosci. 32, 14118–14124 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Jovanovic, T. et al. Impaired fear inhibition is a biomarker of PTSD but not depression. Depress. Anxiety 27, 244–251 (2010).

    Article 

    Google Scholar
     

  • 6.

    Wilensky, A. E., Schafe, G. E., Kristensen, M. P. & LeDoux, J. E. Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of Pavlovian fear conditioning. J. Neurosci. 26, 12387–12396 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Ciocchi, S. et al. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468, 277–282 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 8.

    Han, S., Soleiman, M. T., Soden, M. E., Zweifel, L. S. & Palmiter, R. D. Elucidating an affective pain circuit that creates a threat memory. Cell 162, 363–374 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Haubensak, W. et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468, 270–276 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 10.

    Shrestha, P. et al. Cell-type-specific drug-inducible protein synthesis inhibition demonstrates that memory consolidation requires rapid neuronal translation. Nat. Neurosci. 23, 281–292 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Kandel, E. R., Dudai, Y. & Mayford, M. R. The molecular and systems biology of memory. Cell 157, 163–186 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Klann, E. & Dever, T. E. Biochemical mechanisms for translational regulation in synaptic plasticity. Nat. Rev. Neurosci. 5, 931–942 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Costa-Mattioli, M. et al. eIF2α phosphorylation bidirectionally regulates the switch from short- to long-term synaptic plasticity and memory. Cell 129, 195–206 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Kats, I. R. & Klann, E. Translating from cancer to the brain: regulation of protein synthesis by eIF4F. Learn. Mem. 26, 332–342 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Sidrauski, C., McGeachy, A. M., Ingolia, N. T. & Walter, P. The small molecule ISRIB reverses the effects of eIF2α phosphorylation on translation and stress granule assembly. eLife 4, e05033 (2015).

    Article 

    Google Scholar
     

  • 16.

    Thoreen, C. C. et al. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485, 109–113 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 17.

    Li, H. et al. Experience-dependent modification of a central amygdala fear circuit. Nat. Neurosci. 16, 332–339 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Fadok, J. P. et al. A competitive inhibitory circuit for selection of active and passive fear responses. Nature 542, 96–100 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 19.

    Yu, K., Garcia da Silva, P., Albeanu, D. F. & Li, B. Central amygdala somatostatin neurons gate passive and active defensive behaviors. J. Neurosci. 36, 6488–6496 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Lin, C.-J. et al. Targeting synthetic lethal interactions between Myc and the eIF4F complex impedes tumorigenesis. Cell Rep. 1, 325–333 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Dickins, R. A. et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat. Genet. 37, 1289–1295 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Gorkiewicz, T., Balcerzyk, M., Kaczmarek, L. & Knapska, E. Matrix metalloproteinase 9 (MMP-9) is indispensable for long term potentiation in the central and basal but not in the lateral nucleus of the amygdala. Front. Cell. Neurosci. 9, 73 (2015).

    Article 

    Google Scholar
     

  • 23.

    Botta, P. et al. Regulating anxiety with extrasynaptic inhibition. Nat. Neurosci. 18, 1493–1500 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Guettier, J.-M. et al. A chemical-genetic approach to study G protein regulation of beta cell function in vivo. Proc. Natl Acad. Sci. USA 106, 19197–19202 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 25.

    Costa-Mattioli, M. et al. Translational control of hippocampal synaptic plasticity and memory by the eIF2α kinase GCN2. Nature 436, 1166–1173 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 26.

    Zhu, P. J. et al. Suppression of PKR promotes network excitability and enhanced cognition by interferon-γ-mediated disinhibition. Cell 147, 1384–1396 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Banko, J. L. et al. Behavioral alterations in mice lacking the translation repressor 4E-BP2. Neurobiol. Learn. Mem. 87, 248–256 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Hoeffer, C. A. et al. Inhibition of the interactions between eukaryotic initiation factors 4E and 4G impairs long-term associative memory consolidation but not reconsolidation. Proc. Natl Acad. Sci. USA 108, 3383–3388 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 29.

    Sharma, V. et al. eIF2α controls memory consolidation via excitatory and somatostatin neurons. Nature https://doi.org/10.1038/s41586-020-2805-8 (2020).

  • 30.

    Laxmi, T. R., Stork, O. & Pape, H.-C. Generalization of conditioned fear and its behavioral expression in mice. Behav. Brain Res. 145, 89–98 (2003).

    Article 

    Google Scholar
     

  • 31.

    Ghosh, S. & Chattarji, S. Neuronal encoding of the switch from specific to generalized fear. Nat. Neurosci. 18, 112–120 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Products You May Like

    Articles You May Like

    Missing Pieces of Decarbonization Puzzle Realized
    Space Force official: Launch scrubs are no reason to despair
    Daily briefing: How the uncrushable beetle got so strong
    Intel drops on weak results for its data center group
    NASA Probe OSIRIS-REx Briefly Touches Asteroid Bennu to Collect Rare Samples

    Leave a Reply

    Your email address will not be published. Required fields are marked *